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Abstract: Carbon dioxide (CO2) is an odorless and colorless gas in ambient air. Carbon dioxide 
is one of the greenhouse gases that is related to climate change. Carbon dioxide gas is released by 
many sources and exhaled by humans and animals in ambient air. Carbon dioxide gas concentration 
can be measured using several techniques. However, the most important thing is the ability to measure 
carbon dioxide gas concentration in a high-humidity environment, such as high-cost maintenance, 
specific operators, sensor replacement, decreased performance, and many others. In line with this, this 
study aimed to develop a carbon dioxide gas sensor using a quartz crystal microbalance and TiO2 
layer. This study also identified the influence of the humid environment on the sensor's performance. 
The TiO2-coated quartz crystal microbalance sensor was installed inside a box and connected to a 
frequency counter to measure the frequency shifts. Then, the sensor was exposed to the sample gas 
(concentration = 10,000 mL/m3) with varied humidity levels: 60%, 69%, 79%, 89%, and 99%. The 
humidity variations were controlled using a humidity level controller. These sensor evaluations were 
conducted inside an experimental chamber. The results show that the low humidity levels (60% and 
69%) have the fastest response times (1 s). The high humidity levels (89% and 99%) show the slowest 
response time (6 s). The best accuracy (75%) and sensitivity levels (0.0045 Hz/ppm) are obtained 
from the low humidity level (60%). It can be concluded that the TiO2-coated quartz crystal 
microbalance sensor can be used as a carbon dioxide gas sensor with a humidity <80%. The humidity 
level influences the sensitive layer of the sensor due to the existence of water molecules. A lower 
humidity level, a higher sensor performance.   
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1.  Introduction  
The impact of global warming is commonly identified 

by the average Earth's surface temperature increase. 
Global warming is also related to greenhouse gases1–3). 
The biggest contributor of greenhouse gases is carbon 
dioxide or CO2 gas (72%)4,5). The increase in CO2 gas is 
found in many regions, including Indonesia, Japan, 
Thailand, and other countries. The increase of CO2 gas is 
influenced by the increase of emission sources, such as 
transportation, population, and industrial sectors6–10).  

A previous study identified that CO2 gas in the 
atmosphere reached 410.40 ppm11). The increase in CO2 
gas is related to a serious health impact when the 
concentration is > 500 ppm12). Another previous study 
shows a significant increase in CO2 gas concentration 
(about 2 ppm per year). The increase of this gas is related 
to several diseases, such as oxidative stress and 
endothelial dysfunction. Hence, a way to overcome this 

problem is by conducting a monitoring or mitigation 
system. 

CO2 gas concentrations are measured using many 
technologies, such as a metal oxide gas sensor13), micro-
electro-mechanical systems (MEMS)14), non-dispersive 
infrared (NDIR)15), QCM (quartz crystal microbalance)16), 
and many others. NDIR is a low-cost principle with a 
compact size, easy process control, continuous 
measurement, and high sensitivity. However, the most 
disadvantage of this principle is unstable measurement 
due to the influence of humidity and temperature 
changes17). In contrast, a QCM-based sensor has an 
advantage in its high sensitivity, real-time, and rapid 
response. A QCM also has rapid recovery times, good 
linearity, high stability, and good control for humidity 
parameters18). 
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QCM Working Principle 

A QCM sensor has a specific fundamental frequency 
(f0) that depends on the electrode's material and crystal 
characteristics. QCM works due to the mass deposition on 
its surface with the principle of quartz crystal frequency18). 
In other words, a QCM crystal is a mass sensor where the 
measured frequency decreases linearly to the mass 
changes19). QCM-based sensors are also easy to develop 
due to the flexibility of surface modification using many 
functional layers20). The surface modification is related to 
the QCM performance as the sensing element since a bare 
QCM performs as a mass detection only. For a specific 
analyte or targetted substance, the surface of the QCM has 
to be modified or coated using a sensitive material that can 
react with the targetted substances21,22). Due to this 
characteristic, QCM has the potential to be developed as a 
gas sensor using a specific coating material. 

 
Titanium Dioxide (TiO2) as a Sensitive Layer  

One of the most popular QCM coating materials or 
layers is titanium dioxide (TiO2). TiO2 has good chemical 
stability and low toxicity. TiO2 is relatively considered a 
low-cost material with a unique characteristic23). TiO2 is 
easy to be modified for a sensor development with a good 
electronic and optic characteristics24,25). The TiO2 layer 
has been used as a CO2 sensor with varied performances. 
However, recent studies have yet to identify the humidity 
or moisture content effect on the sensor's performance, 
since humidity level is important in atmospheric gas 
measurement17). Moreover, a good sensor that performs 
well in a humid environment is also important. In line with 
this, this study aims to develop a CO2 gas sensor using a 
titanium dioxide layer. This study also identifies the 
influence of humidity on the sensor's performances, 
including accuracy, sensitivity, linearity, and response 
time.  

 
2.  Materials and Methods 
2.1.  Sensor Preparation  

This study used QCMs (base frequency f0 = 4.995 MHz, 
silver electrodes, purchased from PT. Great Microtama 
Electronics Indonesia) as the bare sensors. All QCMs 

were coated using nano-TiO2 layers (anatase phase, 2 
molars) diluted in aquabides. The coating process was 
conducted using a spin coating method (5µL, 500 rotation 
per minute for 10 s and 2500 rotation per minute for 60 s). 
The coated QCMs were naturally air-dried inside a 
vacuum chamber and tested using a frequency counter26,27). 
The surface of the coated QCMs were characterized using 
a SEM (scanning electron microscope, JEOL-JCM7000). 
The as-prepared sensor was installed in a sensor box (Fig. 
1). 

 

 
 

Fig. 1: The schematic design of the QCM box. 
 

2.2.  CO2 Gas Measurement  
The performances of the QCM sensors were evaluated 

using pure CO2 gas (Fig. 2, purity = 99.98%, purchased 
from PT. Malson Gas Indonesia) inside an experimental 
chamber (volume V = 0.03 m3, flow rate Q = 1 L/minute). 
The gas humidities were varied into five variations (60%, 
69%, 79%, 89%, and 99%) using a humidifier (humidity 
controller) to investigate the influence of humidity level 
on CO2 measurement. For the first step, the humidifier 
was connected to the gas tube and set to 60%. The gas 
sample was injected into the experimental chamber with a 
constant Q (1 L/minute) for 18 s. This step generated 300 
ml of CO2 gas inside the chamber (concentration = 10,000 
mL/m3). The sensor was installed inside the experimental 
chamber and connected to a frequency counter to measure 
the frequency shift (Δf). These processes were also 
conducted to identify the response (trs) and recovery times 
(trc). These treatments were conducted for all humidity 
variations. The humidity and temperature levels were 
measured using a digital sensor.  

 
Fig. 2: Experiment setup for the performance test. 
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2.3.  Performance Evaluation  

All data were written as the mean and SD (standard 
deviation). The frequency shift of each sensor (Δf) was 
calculated from the difference between f0 and f28). 
According to Sauerbrey's equation, a higher frequency 
shift interprets more deposited CO2 gas. The deposited 
mass, Δm, is linear to the frequency shift (∆f) (Eq. 1). A is 
the area of the sensor's electrodes, while μq (2.947x1011 
g/cm s2) and ρq (2.648 g/cm3) are the shear modulus and 
density of the quartz, respectively. The accuracy level was 
calculated by comparing the gas concentration (10,000 
mL/m3) and deposited gas mass (Δm). The differences in 
the sensor's frequency responses in measuring the gas 
concentrations were evaluated using a one-way ANOVA 
(analysis of variance) test, where p < 0.05 was considered 
statistically different. 

  

Δm = - 𝐴𝐴 �𝜌𝜌 𝜇𝜇
2 𝑓𝑓02

 . Δf  (1) 

 
3.  Results 
3.1.  Surface observation  

Figure 3 shows the sensor's morphology with the TiO2 
layer. It can be seen that there is a rigid and uniform layer 
on the surface. The particle distribution is observed at 
±200 nm (classified as fine particle).  

 

 
Fig. 3: Morphological images of TiO2 on the QCM surface 

 (Scale bar = 10 µm). 
 

According to the measurement, the initial frequency of 
a bare QCM sensor is 4.995 MHz. The measured 
frequency of the QCM after being coated is 4.990 MHz. 
The frequency difference is about 5.135 kHz. This low-
frequency difference indicates a low impedance due to a 
stable oscillation frequency, a uniform surface, and a rigid 
surface. In other words, the titanium dioxide was 
successfully coated on the QCM's surface (0.259 µm). 

TiO2 coating is a technique to increase the performance 
of a QCM sensor. As a requirement in developing a 
selective gas sensor, a QCM's surface must be analyzed, 
including the roughness level, particle distribution, and 
coating thickness29). A nanometer-scale particle is useful 
for getting a bigger volume fraction and higher porosity. 
As an impact, it may increase the adsorption ability30). 

 

3.2.  Frequency and response times 
Figure 4 shows the sensor's responses under different 

humidity levels. This figure interprets that the first 
humidity variation (60%) has the fastest response time. 
This variation has only 1 s in giving the first response 
under CO2 gas concentration (∆f = -45 Hz). The second 
position belongs to the second humidity variation (69%), 
showing a response time of 1 s (∆f = -34 Hz). The third 
humidity variation (79%) shows the third position: 2 s (∆f 
= -32 Hz). Both 89% and 99% humidity levels do not 
interpret good response times (the response times are 6 s). 
These two humidity variations have low-frequency shifts 
(∆f < 30 Hz). The fastest response time shows the best 
sensor response under CO2 gas. Then, the biggest 
frequency shift also indicates better gas detection using a 
QCM sensor (p < 0.05). 

 

 
Fig. 4: Frequency responses of the QCM sensors under 

humidity levels 
 

3.3.  Sensitivity and accuracy levels 
Figure 5 interprets the accuracy and sensitivity levels of 

the sensors under different humidity levels. It can be seen 
that the first, second, and third humidity variations have 
accuracy levels > 70%. These humidity levels also have 
good sensitivities, 0.0032-0.0045 Hz/ppm. In contrast, 
89% and 99% humidity levels have low accuracy (< 70%) 
and sensitivity levels (< 0.0030 Hz/ppm). A higher 
sensitivity level indicates a better sensor response. 
Meanwhile, a higher accuracy level indicates a better 
sensing result in a measurement system. 
 
4.  Discussion 

The results indicate that the QCM and TiO2 layer can 
be fabricated as a CO2 gas sensor. According to the 
sensitivity and accuracy levels, including the response 
time, it can be seen that the system performances are 
related to the humidity variations. Thus, the sensitive layer 
and the humidity levels influence the sensing parameters. 

The TiO2 layer has specific crystal phases that influence 
the material sensitivity regarding CO2 or other analytes. 
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This characteristic can be applied as a sensitive layer for 
sensor development using a QCM. Generally, a QCM 
sensor has three working phases: active zone (frequency 
decreases linearly to the increasing deposited mass), 
steady state (maximum resonance), and recovery state 
(back to initial frequency). In this study, the sensor might 
have a maximum condition or steady state and relaxation 
time when exposed to CO2 gas.  

The sensing mechanism of CO2 gas with a TiO2 layer is 
related to oxygen adsorption (Fig. 6). This mechanism can 
be investigated in the surfaces of the QCM when exposed 
to CO2 gas (both physisorption and chemisorption 
processes)22). These two reactions are related to the 
temperature fluctuation (as well as the humidity level) and 
oxygen molecules. Oxygen molecules may adsorb on the 
surface of the TiO2-coated QCM sensor by the 
physisorption process due to Van der Waals bond. There 
will be several dipole interactions that can adsorb oxygen 
molecules. As a chain reaction, there will be new 
substances: chemisorbed oxygen species (O2

-) on the 
QCM electrodes. Since QCM is a microbalance crystal, 
adding mass to its surface causes a decreasing frequency. 
When the maximum resonance occurs (due to the bindings 
of the oxygen atom from humidity and the Ti atom), it 
causes a stagnant response in the QCM sensor (humidity 
> 79%) and the sensor cannot reach the initial 
frequency31,32). In other words, the sensor optimally works 
at the humidity <80%.  

 

 

 
Fig. 5: Sensitivity levels: (a). humidity; and (b). temperature. 
 

The most problem of the measurement is the issue of 
water molecules. Hence, more CO2 exposure with high 
moisture content might cause a maximum resonance on 
the sensor's electrodes. When TiO2 reacts with humid CO2, 
the moisture content is observed on the sensor's surface 
and interacts with TiO2. This interaction may generate a 
new layer (with water molecules) due to the hydroxyl 

group33). As the impacts, this interaction may decrease the 
flexibility and reversibility of the sensor (as found in the 
high humidity levels). These results indicate that the high 
humidity levels (80-99%) have low sensitivity and 
accuracy levels due to the mass-loading effect. 

 

 
Fig. 6: Interactions between TiO2 and CO2 and H2O. 

 
5.  Conclusion 

In summary, a CO2 gas sensor using a TiO2-coated 
QCM is fabricated and evaluated under different 
humidities: 60%-99%. The humidity variations are used 
to identify the influence of the humid environment in the 
sensing performances. The sensor works well in detecting 
and measuring CO2 gas concentration with humidity 
<80%. The fastest response time, 1 s, is obtained at the 
humidity level of 60-69% (accuracy >70%). The 
sensitivity levels are 0.0017 to 0.0045 Hz/ppm. A lower 
humidity has a higher sensor performance in sensing CO2 
gas. 
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Nomenclature 

Δm deposited mass (µg) 
trs response time (s) 
f0 fundamental frequency (Hz) 
f frequency (Hz) 
Δf 
Q 

frequency shift (Hz) 
flow rate (m3/s) 
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