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A B S T R A C T

The quantitative structure-property relationship QSPR method has been used to analyze the corrosion inhibition
properties of furan derivative inhibitors against mild steel. This modeling is based on the correlation between
corrosion inhibition efficiency (IE%) and several electronic properties of compounds such as EHOMO (highest
occupied molecular orbital energy), ELUMO (lowest unoccupied molecular orbital energy), EL-H (gap energy), μ
(dipole moment), IP (ionization potential), EA (electron affinity), ƞ (hardness), σ (softness), χ (electro-
negativity), ∆N (fraction of electron transfer), ω (electrophilicity index), ∆EB-D (back-donation energy), Log P,
Vm (critical volume), and Mr (relative molecular mass). These properties were calculated using DFT at B3LYP/
6–31 G(d). Statistically, they analyzed using four methods: partial least squares regression PLS, principal
component regression PCR, multiple linear regression MLR, and principal component analysis PCA. The best
QSPR modeling results are by PCR statistical analysis. It is proven by the validation results (R2 = 0.976; R2adj =
0.90) and analysis of collinearity in the data. The predictions of the four furan-derived compounds from PCR
modeling gave promising results.

1. Introduction

To achieve a more stable thermodynamic state, metals and their
alloys undergo a natural process known as corrosion [1,2]. Corrosion of
metal compounds and their alloys is one of the key problems the in-
dustry sector now dealing with. It is considered a problem because it
can be a source of environmental pollution. Researchers are therefore
urged to develop methods to protect these minerals and lessen their
environmental impact. Corrosion inhibitors are, therefore, one of the
most often employed strategies for stopping corrosion and reining in
metal deterioration [3,4]. Of course, depending on how corrosive an
environment is, different corrosion techniques are used. For instance,
organic compounds are the most prevalent inhibitors to solve the acidic
media issue. These compounds' structural and electrical characteristics
significantly influence their behavior and performance. These sub-
stances typically have double and triple bonds in their chemical
structure and heteroatoms, including nitrogen, oxygen, sulfur, and
phosphorus, enclosed in aromatic rings. It may increase the material's
surface adsorption value and reactivity [5–9].

Furan-derived compounds have excellent promise as corrosion in-
hibitors in acidic conditions [10,11]. It has been demonstrated that

these derivatives of organic compounds can remove unbound electrons
from a metal surface by using of vacant orbitals at lower energy levels.
In order to form covalent bonds that coordinate, it gives electrons to the
metal surface. The inhibitor can adhere to the metal surface more
readily as a result. By reducing the metal's dissolution rate, the release
of protons, and raising the coverage ratio, its adsorption makes it
possible to block the active sites. The higher inhibition of these com-
pounds' effects on corrosion is evidence of it.

It has been found that this approach to quantum chemistry is highly
helpful in understanding the molecular structure, electronic structure,
and features of the reactive sites. This method is also helpful for com-
prehending the relationship between the effectiveness of corrosion in-
hibition and some corrosion inhibitor molecular indices or their
quantum characteristics. To establish a consistent link between changes
in the index of molecular characteristics and the inhibitory action of
various drugs, QSPR has lately become a popular tool for the quanti-
tative investigation of corrosion inhibition processes [12–18].

The application of mathematics can result in qualitative and quan-
titative data that could help us comprehend the process of corrosion
inhibition better. One of the objectives of this study is to identify a
stable structural property that links the molecular descriptors of
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molecules with their ability to inhibit corrosion (IE%). Experimental
research has been done on them in 250 mL of 1 M HCl with an inhibitor
of 0.005 M as a corrosion inhibitor on mild steel [19,20].

The current study focused on a statistical analysis of the data eval-
uated by comparing four mathematical regression models, namely: PLS,
PCR, MLR, and PCA, to understand the depth of the corrosion inhibition
mechanism. Additionally, this study aimed to identify the relevant and
mutually influential chemical descriptors in the variation of corrosion
inhibition of the compounds investigated. Finally, due to the accurate
prediction outcomes, the outcomes of the constructed mathematical
equations will enable the estimation of the value of corrosion inhibitors
of related compounds and facilitate other researchers' synthesis of re-
lated compounds.

2. Methodology

2.1. Experimental data

This study used 13 furan derivative compounds to find the QSPR
between the potential corrosion inhibitors and their molecular struc-
tures (Fig. 1). Furthermore, the corrosion inhibitor of the other four

furan derivatives was calculated using the best QSPR equation ob-
tained. This research is a complementary statistical study and another
study of previous studies on corrosion inhibitors of furan compounds
that have been tested experimentally. The furan-derived compounds
whose QSPR will be studied can be seen in Table 1, and the furan-
derived compounds whose predicted corrosion inhibitor values will be
sought can be seen in Table 2.

2.2. Computational calculation

All molecular geometries were optimized by Gaussian 09 Software
[25]. Quantum chemical calculations used in geometry optimization at
DFT/B3LYP/6–31 G(d).

Koopman's theorem [26] states that the EHOMO and the ELUMO
can be used to express the IP, EA, χ and η. Ionization potential is the
quantity of energy required to expel one electron from a molecule [27].
Through eq. 1, it is associated with the energy of the EHOMO:

IP=−EHOMO (1)

The term electron affinity (EA) refers to the energy released when a
proton is introduced to a system [27]. It is connected to ELUMO via

Fig. 1. Structure of 13 furan derivatives for QSPR model development and predicted corrosion inhibitor values.
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equation 2:

A=−ELUMO (2)

The ability of an atom or group of atoms to draw electrons toward
itself is measured as electronegativity (χ) [28]. It can be calculated
using the following equation:

= +IP EA
2 (3)

Chemical hardness (η) is an indicator of how well an atom resists a
charge transfer [29]; it is calculated using the following equation:

= IP A
2 (4)

The fraction of transferred electrons (ΔN) from the furan derivatives
to the ferric atom can be determined using Pearson theory [30] (Eq. 5):

=
+

Fe Inh
2( Fe Inh) (5)

where Fe and χinh stand for, respectively, the absolute electro-
negativity of iron and the inhibitor molecule, and the ηFe and ηinh
indicate iron and the inhibitor molecule's absolute hardness. The frac-
tion of electrons transported was calculated using the theoretical value
of bulk iron's electronegativity, Fe = 7.00 eV [31], and a global hard-
ness of Fe =0 by assuming that for a metallic bulk IP = EA [32].

The total electrophilic character of a molecule can be quantified on
a relative scale using a reactivity descriptor termed electrophilicity.
Parr et al. [27] suggested the electrophilicity index measure the energy
loss brought on by the maximal electron flow between the donor and
acceptor. It was described as follows (Eq. 6).

= µ
2

2

(6)

It is also used in determining other physical-chemical descriptors
that will also be used in QSPR. Monte Carlo simulations of furan

derivatives were carried out using the Material Studio application [33].
This study uses iron or Fe crystals with a (110) surface. The thickness
value of the iron used is 8. Furthermore, in the supercell section, the U
and V values are used at 20. In the crystal option, the value of the
vacuum thickness is 15. Finally, a simulation is carried out by selecting
the adsorption location option. The number of inhibitor compounds is
set to 1 and water to 100. The simulation in this study also uses atomic
targets at the top of the Fe layer so that later the results obtained can be
more accurate.

Table 1
Furan-derived compounds whose corrosion inhibitor values have been obtained
experimentally.

No. IUPAC Name Abbreviation IE exp
(%)
[19]

1. Ethyl 5-(chloromethyl)− 2-furoate ECMF 96.54
2. 5-(2-furyl)− 1,3-cyclohexanedione FCH 89.93
3. 2-furanmethanethiol FMT 89.44
4. 2-furonitrile FN 89.03
5. 5-bromo-2-furoic acid BFA 88.60
6. Trans-3-furanacrilyc acid FAA 78.24
7. 2-ethylfuran EF 77.34
8. Methyl 2-furoate MF 76.75
9. 5-methylfurfural MFF 76.14
10. 5-(dimethylaminomethyl)furfuryl

alcohol
DMFA 71.99

11. 2-furoyl chloride FC 64.25
12. Furfuryl alcohol FFA 53.93
13. 2-(2-nitrovinyl)furan NVF 35.96

Table 2
Furan-derived compounds whose predicted corrosion inhibitor values.

No. IUPAC Name Abbreviation Ref

1. Bis(2-methoxy-4-(oxiran-2-ylmethyl)
phenyl) furan-2,5-dicarboxylate

BMOPF [21]

2. 2,5-bis((oxiran-2-ylmethoxy)methy)
furan

BOMF [22]

3. 5-(2-furyl)− 3-methyl-1-penten-3-ol FMP [23]
4. N-(5-acetylfuran-3-yl)acetamide NAA [24]

Fig. 2. (a) Furan derivative compounds (experimental) which have been op-
timized geometry with B3LYP/6–31 G (d); (b) Compounds derived from furan
(prediction) which have been optimized for geometry with B3LYP/6–31 G (d).
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2.3. Statistic analysis

A statistical study was carried out using the XLSTAT premium 2021
application [34] on 13 furan-derived compounds to find the QSPR be-
tween the corrosion inhibitor value and the molecular descriptors of
these compounds. This study selected three statistical analyses to find
the QSPR model: PLS, PCR, and MLR [13,35–38]. Furthermore, PCA
was carried out to see the relationship between descriptors. It also
checks redundancy and collinearity between the studied descriptors so
that later the best statistical analysis could be determined in the QSPR
study of these furan derivatives compounds.

2.4. Validation

The explanatory potency and prediction level of the QSPR modeling
were assessed through validation testing. The only form of validation
used in this study was internal. Internal validation is based on a number
of statistical variables, including the coefficient of determination (R2),
adjusted coefficient of determination (R2adj), prediction coefficient of
determination (R2), PRESS value, and standard deviation (SD). The
importance of this technique is then assessed by examining the coeffi-
cient of determination cross-validation (R2cv) [39,40]. R2cv is expressed in
the form (Eq. 7),

= =

=
R

IE cal
IE avg

1
(IEexp )
(IEexp )cv

i
n

i
n

2 1

1 (7)

Where IEexp and IEcal are the experimental corrosion inhibitor values
and the calculated corrosion inhibitor values, respectively. IEavg is the
average IEexp value.

3. Results and discussion

3.1. Geometry parameters

The geometry parameters of the studied molecules was optimized by
DFT/B3LYP/6–31 G(d) [41,42]. The molecular structure's minimal en-
ergy qualifies the geometry as being obtained, and the lack of ima-
ginary frequencies supports this claim. The final optimized geometry
can be seen in Fig. 2.

3.2. Molecular descriptor calculations

The interaction behavior between metals and inhibitors cannot be fully
explained by experimental research alone because this corrosion inhibition
phenomenon depends on a number of other parameters. Therefore, com-
bining experimental and quantum studies such as QSPR is urgently
needed. The QSPR technique used in this study focuses on the relationship
between each molecule's intrinsic characteristics and corrosion inhibition
ability. Researchers created various models to connect corrosion inhibitors
with some of their chemical characteristics to investigate this relationship.
Therefore, molecular descriptors can be used to forecast the value of
corrosion inhibitors and explain how they work. The most relevant de-
scriptors capable of influencing the adsorption of inhibitor molecules onto
metal surfaces are electronic, structural, and lipophilic indices. The de-
scriptor values obtained are illustrated in Table 3.Ta
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PLS Validation.

Observations 13.00
Sum of weights 12.00
DF 10.00
R² 0.10
Std. deviation 17.39
MSE 252.08
RMSE 15.87
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3.3. QSPR study

3.3.1. Partial Least Square (PLS)
PLS can simultaneously handle a large number of explanatory and re-

sponse variables. This formula is frequently employed, particularly when a
lot of molecular descriptors are being used to test a molecule [43].

Table 5
Predicted values and PLS modeling residuals.

Observation Weight IE exp (%) Pred (IE exp (%)) Residual Std. residual Std. dev. on pred. (Mean)

ECMF 1 96.54 74.68 21.85 1.42 5.16
FCH 1 89.93 75.90 14.02 0.91 5.02
FMT 1 89.44 80.63 8.81 0.57 6.59
FN 1 89.03 73.80 15.23 0.99 5.42
BFA 1 88.60 75.47 13.12 0.85 5.04
FAA 1 78.24 73.73 4.50 0.29 5.44
EF 1 77.34 83.22 -5.88 -0.38 8.36
MF 1 76.75 77.18 -0.43 -0.029 5.13
MFF 1 76.14 71.75 4.38 0.28 6.38
DMFA 1 71.99 83.54 -11.55 -0.75 8.60
FC 1 64.25 71.62 -7.37 -0.48 6.46
FFA 1 53.93 82.12 -28.19 -1.84 7.56
NVF 1 35.96 64.45 -28.49 -1.86 11.83

Fig. 3. The coefficients of the standard versus the variables in the specified PLS model.

Fig. 4. Correlation between IEexp and IEPred with PLS modeling results.

Table 6
PCR validation.

Observations 13.00

Sum of weights 13.00
DF 3.00
R² 0.97
Adjusted R² 0.90
MSE 27.03
RMSE 5.19
MAPE 2.70
DW 1.55
Cp 10.00
AIC 43.79
SBC 49.44
PC 0.18
Press 2940.58
Q² 0.12
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PLS aims to quantitatively forecast the corrosion inhibitor activity of
the chemicals under investigation. PLS modeling is typically re-
presented by the equation below:

IE cal (%) = a0 + a1EHOMO + a2ELUMO + a3EL-H + a4μ + a5IP + a6EA
+ a7χ + a8σ + a9η + a10∆N + a11ω + a12Log P + a13Mr + a14Vm +
a15∆EB-D (8)

where a0 is the constant of the regression; a1–15 represents the re-
gression coefficient of EHOMO, ELUMO, EL-H, μ, IP, EA, χ, σ, η, ∆N, ω, Log
P, Mr, Vm, and ∆EB-D, respectively.

PLS modeling that has been analyzed from descriptor data, accom-
panied by statistical parameter values, is as follows:

IE exp (%) = 69·284 + 0·005EHOMO + 0·459ELUMO + 0·913EL-H –
0·377μ – 0·005IP – 0·459EA – 0·503χ – 17·790σ + 1·826η + 0·223∆N –
0·005ω – 0·424Log P + 0·001Mr + 0·0002 Vm – 7·307∆EB-D (9)

N=13 R2 = 0.104 SD =17.392 R2cv = 667.6667.
Other validation values can be seen in Table 4. Predicted values and

PLS modeling residuals are depicted in Table 5.
Based on the PLS modeling in Equation 2, the significance of each

descriptor vs. the standard regression coefficient is depicted in Fig. 3.
Fig. 3 demonstrates how the applicability of corrosion inhibitor

values based on molecular structure varies depending on the descriptor.
Because the PLS modeling's descriptors don't use the same units, the
standard coefficients that are obtained are estimates rather than gen-
uine scales. It suggests that employing these standardized coefficients
will not allow for the accurate determination of each descriptor's re-
lative significance in the regression analysis. As a result, its applic-
ability is restricted to evaluating the molecular index's impact on the
anticorrosive characteristic under study [44–46].

Regarding statistical parameters, the value of the coefficient of de-
termination (R2 = 0.10), standard deviation (SD = 17.39), and R2cv
= 667.66, PLS does not seem to be able to accurately anticipate the
value of corrosion inhibitors. The residual error value is still large, and
there is a large difference between IEexp and IEpred (Fig. 4).

3.4. Principal Component Regression (PCR)

The general equations used in PCR are identical to those in PLS
regression analysis. PCR modeling results are expressed in the following
equation:

IE exp (%) = 1348·903 + 69·943EHOMO + 35·630ELUMO + 47·393EL-H
– 26·791μ – 69·943IP – 35·630EA – 51·559χ – 253·194σ + 94·787η –
173·134∆N + 3·647ω + 12·557Log P + 0·184Mr – 0·018 Vm –
379·151∆EB-D (10)

N=13 R2 = 0.976 R2adj = 0.904 PRESS =2490.589.
Other validation values can be seen in Table 6.
According to the statistical validation results, PCR has better quality

in determining furan derivative compounds' corrosion inhibitor value
than PLS. It is indicated by good validation results, such as the R2

=0.976 and the R2adj = 0.904. From Table 7, it can also be seen that the
residual value is small and stable; nothing is more than 5 or − 5. Fig. 5
also shows that all calculation results are close to fitting data.

Table 7
Predicted values and residuals from PCR modeling.

Observation Weight IE exp (%) Pred (IE exp (%)) Residual Std. residual Std. dev. on pred. (Mean)

ECMF 1 96.54 95.51 1.03 0.19 5.09
FCH 1 89.93 85.79 4.13 0.79 4.29
FMT 1 89.44 87.37 2.06 0.39 3.04
FN 1 89.03 90.66 -1.63 -0.31 4.86
BFA 1 88.60 87.38 1.21 0.23 4.94
FAA 1 78.24 77.61 0.62 0.12 4.02
EF 1 77.34 76.07 1.27 0.24 4.73
MF 1 76.75 81.16 -4.42 -0.85 3.70
MFF 1 76.14 77.97 -1.83 -0.35 4.92
DMFA 1 71.99 76.89 -4.90 -0.94 4.13
FC 1 64.25 63.54 0.70 0.13 4.95
FFA 1 53.93 51.71 2.22 0.43 4.88
NVF 1 35.96 36.42 -0.46 -0.09 5.15

Fig. 5. Correlation between IEexp and IEPred with PCR modeling results.

Table 8
MLR validation.

Observations 13

Sum of weights 13
DF 6
R² 0.97
Adjusted R² 0.94
MSE 15.29
RMSE 3.911
MAPE 3.008
DW 2.22
Cp 4.39
AIC 39.40
SBC 43.36
PC 0.09
Press 446.16
Q² 0.86
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3.5. Multiple Linear Regression (MLR)

In this research, the MLR model used is the backward model. In
MLR, some less influential descriptors are omitted, and only the most
influential descriptors are taken [47]. The results of MLR modeling are
expressed in the following equation:

IE exp (%) = 1235·047 + 286·773ELUMO – 27·310μ – 192·138∆N +
3·642ω + 12·627Log P + 0·163Mr (11)

N=13 R2 =0.973 R2adj = 0.946 PRESS =446.163. Table 8 shows
MLR validation.

The quantitative structure and property modeling results with
Multiple linear regression (MLR) analysis show high R2 and R2 adj data
values. The number is 0.973 and 0.946, respectively. From Table 9, the
residual error results are also small and stable. In addition, in Fig. 6, it
can be seen that all the data are close to the fitting data, which indicates
that the results are good.

3.6. Principal Component Analysis (PCA)

By reducing a high number of correlated variables to a smaller,
uncorrelated collection of variables, PCA can be used to minimize the
dimensionality of massive data sets [48]. Primary components are the
name for these new variables. The practitioner can streamline the data
and minimize the number of variables [49]. The principal component
or principal axis is the name of the new variable. It enables the re-
searcher to lower the number of variables and simplify the dense in-
formation.

In this study, PCA analysis was carried out to determine the re-
lationships between descriptors. Thus, in the end, it was possible to
determine which data analysis technique was most suitable for quan-
titative structure and property relation modeling. The results of PCA
analysis of 13 furan derivatives and their descriptors can be seen in
Fig. 7.

The contribution of descriptors to the principal components F1, F2,
and F3 are depicted in Table 10. It can be seen that ELUMO, EL-H, μ, EA,
ƞ, σ, χ, ∆N, ω, ∆and EB-D have significant contributions to F1. MR and
Vm contribute significantly to F2. Whereas EHOMO, IP, and Log P con-
tributed strongly in F3.

Fig. 8 shows the projection of the first three main component
variables, F1, F2, and F3, according to the percentage contribution of
each variable in the two correlation graphs. The axes account for as
much variation in the data as they can. They make up, respectively,
69.11%, 14.19%, and 6.91% of the overall variance, with an estimated
total information percentage of 90.21%. This number is adequate for
describing the data set's information.

The matrix's correlation coefficient tells us whether the descriptors
have a strong or weak relationship. Generally, highly correlated

Table 9
Predictive values and residuals of MLR modeling.

Observation Weight IE exp (%) Pred (IE exp (%)) Residual Std. residual Std. dev. on pred. (Mean)

ECMF 1 96.54 96.57 -0.03 -0.008 2.99
FCH 1 89.93 86.41 3.51 0.89 2.93
FMT 1 89.44 87.48 1.95 0.50 2.09
FN 1 89.03 90.82 -1.79 -0.45 3.34
BFA 1 88.60 85.96 2.63 0.67 2.25
FAA 1 78.20 78.07 0.16 0.04 2.67
EF 1 77.34 75.76 1.57 0.40 3.29
MF 1 76.75 82.28 -5.53 -1.41 2.27
MFF 1 76.14 76.89 -0.75 -0.19 3.11
DMFA 1 71.99 76.49 -4.51 -1.15 3.02
FC 1 64.25 61.80 2.44 0.62 2.31
FFA 1 53.93 52.12 1.80 0.46 3.07
NVF 1 35.96 37.44 -1.48 -0.38 3.45

Fig. 6. Correlation between IEexp and IEPred with MLR modeling results.

Fig. 7. Principal components dan variannya.
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descriptors (R ≥ 0.75) are not included to reduce the redundancy that
exists in the matrix data [49,50]. Table 11 indicates perfect negative
collinearity (R = −1) between EHOMO and IP; ELUMO and EA; EL-H and
∆EB-D; and η and ∆EB-D. In addition, there are other strong negative
collinearities such as EHOMO and EA (R= −0.81), EHOMO and χ (R=
−0.90), and so on. Perfect positive collinearity (R=1) can be found in
EL-H and η. Other positive collinearities were also identified in EHOMO
and ELUMO (R = 0.81), EHOMO and ∆N (0.819), etc. It indicates that
these variables are redundant.

According to the PCA descriptive data results, there appears to be
strong collinearity between descriptors. In this case, the matrix
(X′X)− 1 cannot be inverted because many variables have perfect col-
linearity. Therefore, some statistical analysis cannot be used in this
data. Statistical analysis such as MLR cannot be used to predict the
value of corrosion inhibitors because it will lose the most useful in-
formation in making the desired model. Apart from MLR, Multiple
Polynomial Regression (MPR) also cannot be used.

Table 10
Contribution of descriptors to the principal components F1, F2, and F3.

Descriptor F1 F2 F3

Correlation Contribution (%) Correlation Contribution (%) Correlation Contribution (%)

EHOMO 0.78 5.97 0.46 10.22 0.32 10.44
ELUMO 0.99 9.51 0.05 0.11 0.02 0.05
EL-H 0.94 8.61 -0.20 2.01 -0.16 2.59
μ -0.89 7.71 -0.01 0.006 -0.08 0.64
IP -0.78 5.97 -0.46 10.22 -0.32 10.44
EA -0.99 9.51 -0.05 0.12 -0.02 0.05
χ -0.97 9.08 -0.18 1.52 -0.11 1.34
σ -0.91 8.01 0.21 2.25 0.27 7.49
η 0.94 8.61 -0.20 2.01 -0.16 2.59
∆N 0.98 9.40 0.04 0.08 0.06 0.36
ω -0.84 6.80 -0.10 0.52 -0.03 0.11
Log P -0.31 0.92 -0.20 2.01 0.71 48.65
Mr -0.21 0.45 0.79 29.80 -0.35 11.96
Vm -0.285 0.78 0.88 37.09 -0.08 0.65
∆EB-D -0.94 8.61 0.20 2.01 0.16 2.59

Fig. 8. Principal compound F1-F2 and F1-F3 correlation circles.

Table 11
Tolerance and VIF descriptors.

Tolerance VIF

EHOMO 0.000
ELUMO 0.000
EL-H 0.000
μ 0.005 186.33
IP 0.000
EA 0.000
χ 0.000
σ 0.002 490.17
η 0.000
∆N 0.000 2610.16
ω 0.007 150.711
Log P 0.466 2.14
Mr 0.149 6.72
Vm 0.165 6.07
∆EB-D 0.000
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The proof regarding the collinearity problem is also emphasized in
Table 11. If the tolerance value is less than 0.2 and or the VIF value is
more than 10, then it is certain that there is a collinearity problem.
Table 11 shows that only a few descriptors meet these requirements,
and most do not. It indicates that there is a collinearity problem in the
data.

3.7. Monte Carlo simulation

The previous statistical analysis resulted in a temporary conclusion
that the quantitative structure and property relation modeling results
with PCR analysis were the best. From these conclusions, the values of
prediction inhibitor efficiency (IE%pred) were sought for four com-
pounds with unknown corrosion inhibitor values. IE%pred value data for
the four compounds are presented in Table 12.

Table 12 shows that there are several promising IEpred values, such
as the BMOPF compound (IEpred(%) = 169.37) and FMP (IEpred(%)
= 100.81). Furthermore, Monte Carlo simulations of inhibitor com-
pounds for iron (Fe) in a water medium were carried out to find the
adsorption energy of each compound [51]. Monte Carlo simulation
results are shown in Table 12 and Fig. 9 (viewed from the side). Monte
Carlo simulation results (viewed above) are illustrated in Fig. 9.

4. Conclusion

Calculating molecular descriptors using the DFT quantum method
makes it possible to correlate the IE% with molecular descriptors using
the QSPR approach. The established regression analysis results show
that the studied molecules' anticorrosive activity can be explained
based on their electronic and structural properties. Examination of the
quantitative analysis results showed that PCR analysis was the best
statistical method compared to PLS and MLR. It is proven through the
data's validation results (R2 = 0.97; R2adj = 0.90) and collinearity
analysis. The results of QSPR modeling analysis with PCR are proposed
to predict the corrosion inhibitor value of new furan derivative com-
pounds. The prediction results for this study's four new derivative
compounds are very promising, especially for the BMOPF compound.
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