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Abstract. Tin oxide (SnO2) thin film is a form of modification of semiconductor material in nano 
size. The thin film study aims to analyze the effect of triple doping (Aluminum, Indium, and Fluorine) 
on the optical properties of SnO2: (Al + In + F) thin films. Aluminum, Indium, and Fluorine as doping 
SnO2 with a mass percentage of 0, 5, 10, 15, 20, and 25% of the total thin-film material. The addition 
of Al, In, and F doping causes the thin film to change optical properties, namely the transmittance 
and absorbance values changing. The transmittance value is 67.50, 73.00, 82.30, 87.30, 94.6, and 
99.80 which is at a wavelength of 350 nm for the lowest to the highest doping percentage, 
respectively. The absorbance value increased with increasing doping percentage at 300 nm 
wavelength of 0.52, 0.76, 0.97, 1.05, 1.23, and 1.29 for 0, 5, 10, 15, 20, and 25% doping percentages, 
respectively. The absorbance value is then used to find the energy gap of the SnO2: (Al + In + F) thin 
film of the lowest doping percentage to the highest level i.e. 3.60, 3.55, 3.51, 3.47, 3.42, and 3.41 eV. 
Thin-film activation energy also decreased with values of 2.27, 2.04, 1.85, 1.78, 1.72, and 1.51 eV, 
respectively for an increasing percentage of doping. The thin-film SnO2: (Al + In + F) which 
experiences a energy gap reduction and activation energy makes the thin film more conductive 
because electron mobility from the valence band to the conduction band requires less energy and 
faster electron movement as a result of the addition of doping. 

Introduction 
Industry 4.0 is characterized by an increase in a variety of technologies that are the result of the 

hard work of researchers. It is undeniable that these developments require a variety of supporting 
materials, one of which is a semiconductor material. The semiconductor material is a material that 
has a unique characteristic that is flexible, in one condition as a conduit and other conditions can not 
function as a conduit [1]. 

The effort made by researchers to maximize the function of semiconductor materials is to modify 
the shape of the material in the form of thin films. Utilization of thin layers of semiconductor materials 
including TCO (transparent Conducting Oxide) which is used in transparent electrodes [2], LEDs 
(Light emitted diode) [3], solar cells [4], LCD [5], gas sensors, [ 6], etc. Various types of materials 
used in the synthesis of thin films are aluminum, tungsten disulfide [7], titanium dioxide [8], and tin 
oxide [9]. 

The sensitivity of a thin layer is strongly influenced by the value of the energy bandgap of the thin 
layer. The lower the value of the energy bandgap layer, the more sensitive the material is to conduct 
current or as a conductor [10]. The energy band gap value of the tin oxide thin layer is still quite high 
at around 3.62 eV [11], so it needs to be modified by adding another atom to the material. Several 
other atoms were added namely, aluminum-zinc [12], Ferrum [13], fluorine [14], and indium [15]. 
The thin layer of tin oxide doped by aluminum has a less transparent surface, as does the addition of 
fluorine doping. To improve the transparent color of the tin oxide thin layer an investigation was 
carried out by adding aluminum, fluorine, and indium together as a transparent color enhancer. 
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Experimental 
This research was conducted in several stages, namely synthesis, characterization, and analysis. In 

the first stage, the synthesis is carried out starting from making sol-gel, preparation of glass substrate, 
making layers by coating the glass substrate using sol-gel solution, and finally is maturation [16]. The 
second step, thin layer characterization was carried out to obtain data on the optical properties of the 
layer using thermoscientific Uv-Vis, and the data obtained also showed morphological appearance 
and percentage of composition contained in the thin film obtained with SEM-EDX. The third stage, 
the analysis of optical properties data, the morphological appearance, and the percentage of thin-film 
content. 

Thin-film SnO2:(Al+F+In) consist of pure SnO2, 95% SnO2 doped with a mixture of 5% Al+F+In 
with a percentage of 33.3% each from 5% mixture, SnO2 90% doped with a mixture of 10% Al+ F+In 
with a percentage of 33.3% each from 10% mixture, 85% SnO2 were doped with a mixture of 15% 
Al+F+In with a percentage of 33.3% each from 15% mixture, 80% SnO2 mixed with a mixture of 
20% Al+F+In with a percentage of 33.3% each of the 20% mixture, and 75% SnO2 were doped with 
a mixture of 25% Al + F + In with a percentage of 33.3% each from the 25% mixture. The thin-film 
were synthesized using a sol-gel method that is placed on the surface of the glass and the layer 
smoothing process is rotated using a spin coater [17]. The synthesis was carried out with several 
variations of doping material, namely 0, 5, 10, 15, 20, and 25%. Thin-film material that has been 
attached evenly to the glass surface is then heated at a temperature of 150 oC using a furnace for  
1 hour for all doping concentrations. 

The optical properties of the coating are obtained from the thin Uv-Vis thermoscientific which 
includes the transmittance and absorbance of the thin film. The absorbance value is then used to 
obtain the energy band gap value [18] and thin-film activation energy [19]. The energy value of the 
thin layer gap is classified into two, namely direct energy bandgap and indirect energy bandgap. The 
amount of energy band gap is obtained from the eq. 1 [20]. 

 
𝛼𝛼(ℎ𝜐𝜐)ℎ𝜐𝜐 = 𝐶𝐶(ℎ𝜐𝜐 − 𝐸𝐸𝐸𝐸)𝑛𝑛      (1) 

Note: α is the absorbance coefficient, hυ is the incident energy of the photon, C is a constant, n = 1/2 
for direct and n = 2 for indirect band-gap energy [21]. 

Energy gap is also obtained through the graph method  (𝛼𝛼ℎ𝜐𝜐)𝑛𝑛  to the photon energy. The bandgap 
energy is shown by the slope of the photon energy graph concerning (𝛼𝛼ℎ𝜐𝜐)𝑛𝑛. While the thin-film 
activation energy is obtained from 1/m or one per photon energy gradient graph towards ln𝛼𝛼, where 
𝛼𝛼 were founded from equation 𝛼𝛼 = 2.303𝐴𝐴/𝑑𝑑 (note: A is absorbance, d is thickness). 

Result and Discussion 
The synthesis of SnO2 thin film with three aluminum, fluorine and indium doping materials with 

doping variations causes the thin film to become more transparent, as doping concentrations increase. 
More clearly the results of the synthesis can be seen in Fig.1. 
 

      
(a) (b) (c) (d) (e) (f) 

Fig. 1 Thin film  SnO2: (Al+F+In)  (a) 100: 0%, (b) 95: 5%, (c) 90: 10%, (d) 85: 15%, (e) 80: 20%, 
(f) 75: 25 %. 

The optical properties of SnO2:(Al+F+In) thin film characterized by UV-Vis Spectrophotometer 
obtained transmittance and absorbance values as shown in Fig. 2. 
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(a) (b) 

Fig. 2 Optical properties of SnO2 and SnO2: (Al+F+In) thin films in 60 nm, (a) Transmittance of one layer, 
(b) Absorbance of one layer. 

 
The transmittance value of SnO2: (Al+F+In) consist of thin films in the wavelength range of 300-

800 nm are shown in Fig. 2a. The value of transmittance for the percentage of doping 0-25% is 67.50, 
73.00, 82.30, 87.30, 94.6, and 99.80% respectively. This means that the higher the amount of doping 
aluminum, fluorine, and indium the higher the transmittance value produced [22]. 

The absorbance value of SnO2: (Al+F+In thin films in the wavelength range of 300-800 nm is shown 
in Fig. 2b. The absorbance value for doping percentage is 0-25%, each of them is 0.52, 0.76, 0.97, 
1.05, 1.23, and 1.29. This means that the higher the amount of aluminum, fluorine, and indium doping 
additions the higher the absorbance value produced [23]. 

Based on eq. 1, obtained direct and indirect energy gaps allowed SnO2 dan SnO2:(Al+F+In) thin 
layer by tauc plot method as shown in the Fig. 3. 

 
 

(a) (b) 
Fig. 3 The energy band gap of SnO2 and SnO2:(Al+F+In) thin films. (a) direct allowed,  

(b) indirect allowed. 
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(a) (b) 

Fig. 4 The relationship between the percentage of aluminum, fluorine and indium doping with 
energy bandgap (a) direct allowed, (b) indirect allowed. 

The relationship between the percentage of doping with the energy band gap is shown in Fig. 4. 
Fig. 4a is the energy band gap direct allowed, while Fig. 4b represents the energy band gap direct 
allowed. The value of the energy band gap direct allowed for doping percentage is 0-25%, each of 
them is 3.60, 3.55, 3.51, 3.47, 3.43, and 3.41 eV, while energy bandgap indirect allowed values are 
3.92, 3.89, 3.88, 3.84, 3.81, and 3.78 eV. This shows that the addition of aluminum, fluorine and 
indium doping can cause a decrease in the value of the bandgap thin film that were founded from 
sloope of graph photon energy versus (𝛼𝛼ℎ𝜐𝜐)𝑛𝑛. This means that the smaller the percentage of doping 
aluminum, fluorine, and indium energy bandgap produced the greater [24, 25]. The decrease in the 
bandgap energy value indicates that the electron jump from the valence band to the conduction band 
will be easier. 

The value of ln𝛼𝛼 and activation energy SnO2 : (Al+F+In) thin film, were follow Arrhenius plot is 
shown in Fig. 5. 

  
(a) (b) 

Fig. 5 Characteristics of optical properties of SnO2 and SnO2: Al+F+In thin films. (a) Ln (α), (b) 
activation energy. 

Activation energy values obtained for the percentage of doping aluminum, fluorine and indium 0, 
5, 10, 15, 20 and 25% are respectively 2.27, 2.04, 1.85, 1.78, 1.72, and 1.51 eV. In general, the 
activation energy decreases with increasing doping value. This value means that the electron mobile 
more quickly in semiconductor material to conduct electricity. 
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Conclusions 
A thin layer of SnO2 was doped with aluminum, fluorine, and indium (SnO2: Al + F + In). The optical 
properties of the layer consist of transmittance, absorbance, energy bandgap, and activation energy. 
The value of transmittance for the percentage of doping 0-25% increased from 67.50 to 99.80% at 
350 nm wavelength, as well as the absorbance increased from 0.52-1.29 at 300 nm wavelength. 
Besides that the energy bandgap and the resulting activation decreased with an increasing number of 
doping aluminum, fluorine, and indium. 
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